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Applications of Information Theory to Improve Computer-Aided
Diagnosis Systems

Year 2 Progress Report

Paul Sajda, Clay Spence and Lucas Parra
Sarnoff Corporation
CN5300
Princeton NJ 08543-5300

{psajda, cspence, Iparra} @sarnoff.com

Introduction

During the second year of this project we have been further developing and evaluating our hierarchical
image probability (HIP) for mammographic computer-aided diagnosis (CAD) applications. In particular
our effort has more rigorously evaluated the generative properties of the model for image synthesis and
novelty detection. Analysis of the HIP model for synthesizing new mammographic images is important for
understanding how the model captures image structure specific to mammographic masses. Novelty
detection is particularly relevant since it would enable our system to establish confidence measures on
detection, something which most current CAD systems do not offer. Experiments have been done using a
mammographic mass dataset from The University of Chicago (UofC) and in all cases performance has been
evaluated relative to the UofC CAD system (Nishikawa et al., 1995)—e.g. the HIP model augments the
UofC CAD system. Finally, we have investigated two information-based approaches for model selection,
the Minimum Description Length principle (MDL) and the Akaike's Information Criterion (AIC) both of
which track HIP’s generalization performance.

Body

The following are the two primary tasks completed under the second year of this project;

1. Further develop and evaluate the hierarchical image probability model, specifically focusing on the
generative aspects of its architecture. :

2. Apply and evaluate MDL framework for selecting architecture of hierarchical model. Compare MDL
framework with other model selection methods.

In the following sections we describe our progress in accomplishing these tasks. We refer to our year 1
report (Sajda et al, 1999) for a detailed description of the HIP model.

Evaluation of HIP

Most neural networks are discriminant models in that they model P(Class|[Image); the probability of a class
given an image. HIP is a generative model, instead modeling P(Image|Class). Using Bayes rule one can
compute P(Class|Image) for classification. However, one can also use the representation of the image
probability to synthesize new images, detect novel examples, remove noise, compress images etc. Thus the
generative nature of HIP makes it a more flexible and useful framework compared to conventional neural
network approaches. We have evaluated HIP within the context of it generative utility, specifically with
regard to 1) mammographic mass classification, 2) mammographic image synthesis and 3) novelty
detection/confidence measures.




Mass Classification

Our original HIP architecture used a tree of hidden labels (Sajda et al, 1999; Spence et al, 2000). These
labels serve two functions: First, each label determines the distribution of the feature vectors at its pyramid
level and spatial position. Second, it determines the distribution of labels below it in the label tree. These
two purposes can conflict. For example, at the very top of the tree there are relatively few examples to
which the mixture components can be fit, since there are very few pixels per image at that pyramid level.
Therefore not many mixture components can be used. However, those labels condition very large parts of
the image, which can call for many label values.

To solve this conflict, we separate the two functions by using two sets of labels, which we call hierarchy
and mixture labels. The hierarchy labels have tree-like dependencies as before, but do not directly
condition the feature vectors-- they carry only the coarse-to-fine conditioning. The hierarchy labels also
condition the mixture labels, which then condition the feature vectors. Each mixture label is only
conditioned on the local hierarchy label. This makes it possible to have few mixture components and many
hierarchy labels at low-resolution pyramid levels.

Using this new hidden label architecture, the best HIP model pair, as defined by the AIC cost (see below),
gives A, = 0.78, and has the ROC curve shown in Figure 1. In this case we have eliminated 30% of the
false positives of the UofC CAD system for mass detection, without loss in sensitivity.
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Figure 1. ROC curve of best HIP model, chosen using AIC. Results are relative to UofC CAD system
for mass detection.

Mammographic Synthesis

Since the HIP model is a generative model, we can sample the model and synthesize new images. In
practice, this property might be best utilized for image compression or noise reduction. Within the context
of ROI classification, synthesized images can give us insight into what features the model is extracting and




representing for both positive and negative ROIs. Using the same ROI database used for classification, we
constructed HIP models for positives (cancer) and negatives (no cancer). The trained HIP models were
sampled to synthesize new ROI images. Figure 2 shows examples of these images. Inspection of the
synthesized positive ROIs shows more focal structure, with more well-defined borders and higher spatial
frequency content than the negative ROlIs.

ROI images synthesized from positive model ROI images synthesized from negative model

Figure 2: Mammographic ROI images synthesized from positive and negative HIP models.
Synthesized positive ROIs tend to have more focal structure, with more defined borders and higher
spatial frequency content. Negative ROIs tend to be more amorphous with lower spatial frequency
content.

Novelty Detection

Novelty detection identifies examples that are significantly different from the examples on which the
model(s) was trained (Bishop, 1994). Detecting novel examples can be useful in a CAD system for
generating confidence measures on the CAD output and identifying data that could be used in future
training of the neural network/statistical model. The HIP model’s generative structure enables novel
examples to be identified by thresholding the log-likelihood of the models. Figure 3 illustrates how ROC
performance improves if novelty detection is used to generate a confidence measure for rejecting low-
confidence examples. In this example, two HIP models were trained, one for positive ROIs and one for
negatives ROIs (same ROI database as for classification and synthesis). Test data was evaluated by
computing the likelihood ratio of the models as well as the absolute value of the log-likelihoods. The
absolute value of the log-likelihoods are thresholded such that low values are considered low confidence
and therefore rejected (not classified). As the threshold on the log-likelihood is increased, more ROIs are
rejected because of low confidence and the area under the ROC curve begins to increase. Also shown in
Figure 3 are data that are rejected (not classified) because they fall below the threshold at the given
rejection rate—these ROIs are novel with respect to the data on which the models were trained. Our
current effort is investigating, more thoroughly, the role novelty detection might play in generating new
training data for updating a CAD system.




Effect of rejecting low-probability examples on performance
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Figure 3: Novelty detection for improving ROC performance. The log-likelihood of the two HIP
models (positive and negative) can be thresholded so that we reject (do not classify) a fraction of the
test data that is novel, relative to the training examples. Shown is the area under the ROC curve as
this novelty/confidence threshold is increased (thus increasing the fraction rejected). Also shown are
examples of negative and positive ROIs that would be rejected at different thresholds.

Information Theoretic Model Selection

Information theory provides us with at least two criteria for selecting between alternative models for a
probability: the Minimum Description Length (MDL) criterion and the Akaike’s Information Criterion
(AIC). We have investigated the usefulness of these criteria for choosing Hierarchical Image Probability
(HIP) models for classifying mammographic mass Regions Of Interest (ROIs). A typical result is shown in
is Figure 4. Both MDL and AIC track test A, performance—MDL and AIC cost decrease as A,
performance on the test set increases. In the following we describe the two criteria and then suggest a
methods to further improve the information theoretic selection criteria.
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Figure 4. Information theoretic model selection using AIC (red) and MDL (blue). Plotted is model
cost vs A, on the test data. MDL would choose a model with test A, = 0.75 while AIC would choose a
model with A,=0.78.

MDL

The minimum description length of a set of data is the length of the data encoded according to some
probability model, which is the model we are trying to fit to the data, plus the length of the description of
the model] (Rissanen, 1983; Rissanen, 1996). The length of the encoding of the data is the negative log
probability density of the data according to the model, plus a constant representing the precision with which
the data must be specified. We ignore this constant when doing model selection, since it is the same for all
models.

The code length of the model has two components, a term for coding the architecture, and a term for
encoding the parameters. ‘Suppose we are comparing models with different structures. For example, we
may be comparing mixture density models with different numbers of mixture components. We will call the
different models architectures. In this example, the number of mixture components needs to be encoded,
and in general the specific architecture must be encoded. In practice this is often ignored, since it is a small
contribution to the total description length.

Given an architecture, we need to encode the parameter. The Cramer-Rao bound gives a lower limit on the
variance of the parameters about their true value, assuming that the true probability is equal to our
architecture with some values for the parameters. This limit is the inverse M of the Fisher information
matrix M,which is the negative expected value of the second derivative (or Hessian) with respect to the
parameters of the log probability of the data according to the model, evaluated at the true value of the
parameters. The precision with which we encode the parameters need not be greater than the precision with
which we know them, i.e., it need not be greater than the standard deviations given by

M. Thus we would compute the components of the parameter vector along the eigenvectors of M7, and
the precision of these components are given by the square roots of the eigenvalues. The total code length




of the parameters is the sum of the logarithms of these precisions, which is the log of the square root of the
determinant of M\, The code length for the parameters 0 is the negative log of the square root of this
volume, or

~log(M?[ ") = %log(|M|). 1)

Since it involves the probability of all of the data, M is proportional to the number of examples N, at least
when there are enough examples. Because of this we can pull out the dependence on N. If there are d

parameters, this gives
l1og(|M|)=—1-1o MM _Lyod veM
2 2 N 2 N

d 1 M
=—log(N)+—=lo
2 2 N
The second term is constant in the limit of large N, so in that limit we can ignore it. The remaining term is

straighforward to compute, since we only need to know the number of parameters and the number of
training examples. The total code length for MDL is therefore,

@

N
MDL =-)"log P(x, | ) + -(-zl—log N &)
=1

AIC

Akaike’s Information Criterion is the expected Kullback-Leibler distance between the true model and the
best model of the current architecture, given the data set. It is assumed that the architectures form nested
sets with the true distribution being a member of one of these sets, that the number of examples N is
sufficiently large, and that the current model is not too far from the true distribution. The resulting criterion
is

N
AIC=-2) log P(x, | 6) +2d @

i=1

Deficiencies of the information criteria

Both MDL and AIC assume that there are sufficent examples, N. Treatments of MDL, for example,
sometimes use the term "asymptotically", which implies the number of examples goes to infinity for a fixed
model (Rissanen, 1996). Thus we should only expect to get good results from these criteria if we have
enough examples and we find a best model before trying models that are too large for the amount of data.
In our current experiments we are not obviously in this situation. We have a fixed number of examples,
and we are varying the model complexity. There is no criterion for deciding whether we have enough
examples, or, alternately, when we have too complex a model for the criteria to be valid.

One possible method to address this “asymptotic” issue is to add corrections to the criteria For MDL, the
correction is clear: include the second term from Equation (2). This is certainly more complex, but it is
feasible. For the HIP model it should be possible to estimate the Hessian numerically. We are currently
investigating this approach.

Current difficulties with the HIP model

While investigating image synthesis with HIP models we noticed that our filter sets tended to suppress high
frequencies. This means that the inverse transformation (reconstructing an image from the filtered and sub-
sampled images) must boost these frequencies. In extreme cases this will result in ringing. In less severe




cases there is a tendency toward “blockiness”. This appears if we generate a set of white noise images, and
then construct the original image that would have given these white noise images as feature images. That
is, we assume the white noise images are feature images and reconstruct the corresponding original image.
With our previous features this tended to give sharp horizontal and vertical edges that nearly group into
squares (Figure 5).

Figure 5. Two random Gaussian images. Both were produced by generating random images that
were treated as transform or feature images, i.e., as if they were generated by filtering and
subsampling some original image with a complete set of filters. The transform was then inverted to
obtain the original image that would produce the random transform images. The left image was
generated by setting the transform images to unit variance Gaussian white noise. The right image
was generated by a HIP model with only one component per level. The HIP model was fit to
mammographic mass ROIs. The decreased blockiness is due to the correlation between features at
successive pyramid levels, which is captured by the HIP model.

As shown in Figure 5, the HIP model can partially eliminate this blockiness because it captures correlations
between features at neighboring levels. Ignoring these correlations gives increased blockiness. While it is
good that the HIP model can learn to eliminate artifacts such as blockiness, it is not a good use of the HIP
model’s resources since these artifacts are introduced because of the choice of features. We would prefer
to have features that do not have such artifacts, so the resources of the HIP model can be devoted to
learning other structures.

To address these issues we have developed a new set of features. Our design is based on the need for white
noise in the features to imply white noise in the original image. This condition implies that the transform
be orthogonal, so our new features are constructed using orthogonal filters suitable for sub-sampling by
three. When we synthesize an image by setting transform images to white noise, the resulting image is
significantly less blocky. The remaining blockiness can be understood by considering distortions
introduced in the power spectrum. With the orthogonal transform, images at several pyramid levels will
combine to give an image with a stepped power spectrum, i.e., it is piece-wise flat with larger powers at
lower frequencies. This approximates a 1/f power spectrum, but the square shape and sharp steps in the
spectrum tend to generate blobs near certain scales in a square arrangement. We are continuing to analyze
these filters to see if they can be modified to further reduce blockiness artifacts.




Key Research Accomplishments

1. We have demonstrated that the HIP model, trained using information theoretic model selection, can
eliminate 30% of the false positives mass ROIs, without loss in sensitivity, using a database generated
from The University of Chicago CAD mass detection system.

2. We have demonstrated the generative utility of the HIP architecture for identifying novel ROIs. This
novelty detection is useful for defining confidence measures for the classifier.

3. We have demonstrated the generative utility of the HIP architecture for synthesizing new positive and
negative mammographic ROIs. We have discussed how synthesis can be used to gain an intuitive
understanding of the structure that is captured by the model.

4. We have shown that different information theoretic measures track the HIP generalization performance
and thus offer good criteria for model selection..

Reportable Outcomes

1. C.Spence, L. Parra, and P. Sajda, “Mammographic mass detection with a hierarchical image
probability (HIP) model,” in Medical Imaging 2000: Image Processing, Kenneth M. Hanson, Editor,
Proceedings of SPIE Vol. 3979, 990-997 (2000)

2. Invited talk at Columbia University Medical School “Hierarchical Neural Networks for Object
Recognition: Applications to Mammographic Computer-aided Diagnosis”, June 2000

3. DoD Era of Hope meeting (poster), “A Hierarchical Image Probability Model for Mammographic
Mass Detection”, June 2000

4. Invited lecture at The University Of Pennsylvania, Department of Bioengineering “Computer Assisted
Diagnosis for Mammography”, November 1999

5. NIMA/DARPA Medical Dual-use project ($1.8M). Focus on developing dual-use technology for
medical and military applications. Medical areas include breast cancer, lung cancer, retinal disease and
neurological disease.

Conclusions

Under the second year of this effort we have applied information theoretic criteria for selecting HIP models
for mass classification in a mammographic CAD system. Our results show that HIP models selected using
this criteria can reduce false positive rates by 30% for a data set constructed using The University of
Chicago CAD mass detection system. We have also demonstrated the generative utility of our HIP model.
We have sampled positive and negative HIP models for synthesizing ROIs, enabling us to gain an intuition
into the structure the HIP model learns for representing the two classes. Finally we have used the
generative structure of the HIP model to detect novel examples—examples that significantly differ from the
training data. Novelty detection can be used to generate confidence measures and we have shown how
these confidence measures can be used to improve ROC performance.

“so what” section

Statistical pattern recognition is a key element in any mammographic computer-aided diagnosis system.
Hierarchical pattern recognizers are particularly useful since they are capable of exploiting contextual and
multi-resolution information for detecting clinically significant objects. Most statistical pattern recognizers
that have been previously developed for mammographic CAD have been trained to estimate
P(Class|Image). By contrast, a HIP model, trained to estimate P(Image|Class), has many attractive features.
One could use HIP for detection/classification in the usual way by training a distribution for each object
class and using Bayes’ rule to get P(Class|Image). We have reported results for the application of HIP for
reducing false positives generated by The University of Chicago CAD system for mass detection. There are
other attractive features of the HIP framework, which could have a major impact on the design, and
development of mammographic CAD systems. Since HIP computes P(Image|Class), we can detect unusual
images and reject them rather than trust the classifier; something that is not possible with models of
P(Class|Image). We have shown results illustrating how novelty detection can be used to improve the ROC




performance of CAD systems. Building confidence measures into CAD systems is an open area of research
and the HIP model provides a mechanism by which to generate these measures.

The HIP model has applications other than detection/classification. Since the HIP model is a generative
model, one can use it to compress data, given the probability distribution of the objects of interest. If one
wants lossless compression of a digital mammogram one need only train a HIP model for a set of
mammographic images and then use the probability model to compress the data. More interesting is the
application of HIP for lossy compression. In that case, one might train a HIP model on clinically significant
objects, such as mammographic masses, since those are the parts of the image one would like to preserve—
i.e. have minimal distortion and compression artifacts. The entire image can then be compressed using this
model. Though there will be loss over regions of the mammogram which do not fit the model, those regions
of clinical significance will be preserved since they will have a good fit to the probability model and
require very few bits for compression.
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Mammographic mass detection with a hierarchical image
probability (HIP) model

Clay Spence, Lucas Parra, and Paul Sajda
Sarnoff Corporation CN5300 Princeton, NJ 08543-5300

"'ABSTRACT

We formulate a model for probability distributions on image spaces. We show that any distribution of images can be
factored exactly into conditional distributions of feature vectors at one resolution (pyramid level) conditioned on the
image information at lower resolutions. We would like to factor this over positions in the pyramid levels to make it
tractable, but such factoring may miss long-range dependencies. To fix this, we introduce hidden class labels at each
pixel in the pyramid. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov
model on a tree. The model parameters can be found with maximum likelihood estimation using the EM algorithm.
We have obtained encouraging preliminary results on the problems of detecting masses in mammograms.

Keywords: Mammography, CAD, Image Probability

1. INTRODUCTION

Many approaches to object recognition in images estimate Pr(class|image). By contrast, a model of the proba-
bility distribution of images, Pr(image), has many attractive features. We could use this for object recognition
in the usual way by training a distribution for each object class and using Bayes’ rule to get Pr(class |image) =
Pr(image | class) Pr(class)/ Pr(image). Clearly there are many other benefits of having a model of the distribution
of images, since any kind of data analysis task can be approached using knowledge of the distribution of the data.
For classification we could attempt to detect unusual examples and reject them, rather than trusting the classifier’s
output. We could also compress, interpolate, suppress noise, extend resolution, fuse multiple images, etc.

Many image analysis algorithms use probability concepts, but few treat the distribution of images. One of the few
examples of image distribution models was constructed by Zhu, Wu and Mumford.! They compute the maximum
entropy distribution given a set of statistics for some features, which seems to work well for textures but it is not
clear how well it will model the appearance of more structured objects.

There are several algorithms for modeling the distributions of features extracted from the image, instead of
the image itself. The Markov Random Field (MRF) models are an example of this line of development; see, eg.,
Rgferenc% 2,3. However, they tend to be very computationally expensive.

In De Bonet and Viola’s flexible histogram approach,®® features are extracted at multiple image scales, and the
resulting feature vectors are treated as a set of independent samples drawn from a distribution. The distribution of
feature vectors is then modeled using Parzen windows. This has given good results, but the feature vectors from
neighboring pixels are treated as independent when in fact they share exactly the same components from lower-
resolutions. To fix this one might build a model in which the features at one pixel of one pyramid level condition
the features at each of several child pixels at the next higher-resolution pyramid level. The multiscale stochastic
process (MSP) methods do exactly that. Luettgen and Willsky,® for example, applied a scale-space auto-regression
(AR) model to texture discrimination. They use a quadtree or quadtree-like organization of the pixels in an image
pyramid, and model the features in the pyramid as a stochastic process from coarse-to-fine levels along the tree. The
variables in the process are hidden, and the observations are sums of these hidden variables plus noise. The Gaussian
distributions are a limitation of MSP models. The result is also a model of the probability of the observations on
the tree, not of the image.

All of these methods seem well-suited for modeling texture, but it is unclear how one might build models to

capture the appearance of more structured objects. We will argue below that the presence of objects in images can
make local conditioning like that of the flexible histogram and MSP approaches inappropriate. In the following we

E-mail: {cspence, lparra, psajda}@sarnoff.com

In Medical Imaging 2000: Image Processing, Kenneth M. Hanson, Editor,
990 Proceedings of SPIE Vol. 3979 (2000) ® 1605-7422/00/$15.00
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We formulate a model for probability distributions on image spaces. We show that any distribution of images can be
factored exactly into conditional distributions of feature vectors at one resolution (pyramid level) conditioned on the
image information at lower resolutions. We would like to factor this over positions in the pyramid levels to make it
tractable, but such factoring may miss long-range dependencies. To fix this, we introduce hidden class labels at each
pixel in the pyramid. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov
model on a tree. The model parameters can be found with maximum likelihood estimation using the EM algorithm.,
We have obtained encouraging preliminary results on the problems of detecting masses in mammograms.

Keywords: Mammography, CAD, Image Probability

1. INTRODUCTION

Many approaches to object recognition in images estimate Pr(class|image). By contrast, a model of the proba-
bility distribution of images, Pr(image), has many attractive features. We could use this for object recognition
in the usual way by training a distribution for each object class and using Bayes’ rule to get Pr(class|image) =
Pr(image | class) Pr(class)/ Pr(image). Clearly there are many other benefits of having a model of the distribution
of images, since any kind of data analysis task can be approached using knowledge of the distribution of the data.
For classification we could attempt to detect unusual examples and reject them, rather than trusting the classifier’s
output. We could also compress, interpolate, suppress noise, extend resolution, fuse multiple images, etc.

Many image analysis algorithms use probability concepts, but few treat the distribution of images. One of the few
examples of image distribution models was constructed by Zhu, Wu and Mumford.! They compute the maximum
entropy distribution given a set of statistics for some features, which seems to work well for textures but it is not
clear how well it will model the appearance of more structured objects.

There are several algorithms for modeling the distributions of features extracted from the image, instead X

the image itself. The Markov Random Field (MRF) models are an example of this line of development; see, e.g.,
References 2,3. However, they tend to be very computationally expensive.

In De Bonet and Viola’s flexible histogram approach,*® features are extracted at multiple image scales, and the
resulting feature vectors are treated as a set of independent samples drawn from a distribution. The distribution of
feature vectors is then modeled using Parzen windows. This has given good results, but the feature vectors from
neighboring pixels are treated as independent when in fact they share exactly the same components from lower-
resolutions. To fix this one might build a model in which the features at one pixel of one pyramid level condition
the features at each of several child pixels at the next higher-resolution pyramid level. The multiscale stochastic
process (MSP) methods do exactly that. Luettgen and Willsky,® for example, applied a scale-space auto-regression
(AR) model to texture discrimination. They use a quadtree or quadtree-like organization of the pixels in an image
pyramid, and model the features in the pyramid as a stochastic process from coarse-to-fine levels along the tree. The
variables in the process are hidden, and the observations are sums of these hidden variables plus noise. The Gaussian
distributions are a limitation of MSP models. The result is also a model of the probability of the observations on
the tree, not of the image.

All of these methods seem well-suited for modeling texture, but it is unclear how one might build models to
capture the appearance of more structured objects. We will argue below that the presence of ob jects in images can
make local conditioning like that of the flexible histogram and MSP approaches inappropriate. In the following we
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Figure 1. Pyramids and feature notation.

prasent a model for probability distributions of images, in which we try to move beyond texture modeling. This
hicrarchical image probability (HIP) model is similar to a hidden Markov model on a tree, and can be learned with
th: EM algorithm. In preliminary tests of the model on classification tasks the performance was comparable to that

of other algorithms.

2. COARSE-TO-FINE FACTORING OF IMAGE DISTRIBUTIONS

Our goal will be to write the image distribution in a form similar to Pr(I) ~ Pr(Fo | F,) Pr(F, | F3)..., where F; is
the set of feature images at pyramid level . We expect that the short-range dependencies can be captured by the
medel’s distribution of individual feature vectors, while the long-range dependencies can be captured somehow at
low resolution. The large-scale structures affect finer scales by the conditioning.

In fact we can prove that a coarse-to-fine factoring like this is correct. From an image I we build a Gaussian
pyramid (repeatedly blur-and-subsample, with a Gaussian filter). Call the I-th level Iy, e.g., the original image is I
(Figure 1). From each Gaussian level I; we extract some set of feature images F;. Sub-sample these to get feature
images G;. Note that the images in G; have the same dimensions as I;;;. We_denote by G; the set of images
containing I;;; and the images in G;. We further denote the mapping from I; to G; by G.

Suppose now that Jp : Iy — Gy is invertible. Then we can think of Goasa change of variables. If we have
a distribution on a space, its expressions in two different coordinate systems are related by multiplying by the
Jacobian. In this case we get Pr(ly) = |Go| Pr(Go). Since Go = (Go, 1), we can factor Pr(Go) to get Pr(lp) =

(60| Pr(Go | Iy) Px(Ry). If G is invertible for all I € {0,..., L — 1} then we can simply repeat this change of variable
* and factoring procedure to get
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This is a very general result, valid for all Pr(I), no doubt with some rather mild restrictions to make the change
of variables valid. The restriction that §; be invertible is strong, but many such feature sets are known to exist, e.g.,

: most wavelet transforms on images.

3. THE NEED FOR HIDDEN VARIABLES
For the sake of tractability we want to factor Pr(G; | I141) over positions, something like

Pty ~ I I Prle@) [fua (=)
{

z€l141

where g;(z) and fi41(z) are the feature vectors at position z. The dependence of g1 on fi; expresses the persistence
of image structures across scale, e.g., an edge is usually detectable as such in several neighboring pyramid levels. The

flexible histogram and MSP methods share this structure.



While it may be plausible that fi.; (z) has a strong influence on g;(z), a model distribution with this factorization
and conditioning cannot capture some properties of real images. Objects in the world cause correlations and non-
local dependencies in images. For example, the presence of a particular object might cause a certain kind of texture
to be visible at level I. Usually local features fi;; by themselves will not contain enough information to infer the
object’s presence, but the entire image I;4; at that layer might. Thus g;(z) is influenced by more of I;4; than the
local feature vector.

Similarly, objects create long-range dependencies. For example, an object class might result in a kind of texture
across a large area of the image. If an object of this class is always present, the distribution may factor, but if such
objects aren’t always present and can’t be inferred from lower-resolution information, the presence of the texture at
one location affects the probability of its presence elsewhere.

We introduce hidden variables to represent the non-local information that is not captured by local features. They
should also constrain the variability of features at the next finer scale. Denoting them collectively by A, we assume
that conditioning on A allows the distributions over feature vectors to factor. In general, the distribution over images
becomes

L
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A
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As written this is absolutely general, so we need to be more specific. In particular we would like to preserve
the conditioning of higher-resolution information on coarser-resolution information, and the ability to factor over
positions. : .

As a first model we have chosen the following structure for our HIP model:*

L
P oc > IT T [Prleilfis,a1,2) Pr(ar|aus, 2)] ®)

Aoy AL 1=0z€l1 4y

To each position z at each level I we attach a hidden discrete index or label a;(z). The resulting label image A4; for
level I has the same dimensions as the images in Gy.

Since a;(z) codes non-local information we can think of the labels A; as a segmentation or classification at the
I-th pyramid level. By conditioning a;(z) on a;41(z), we mean that a;(z) is conditioned on a;; at the parent pixel of
z. This parent-child relationship follows from the sub-sampling operation. For example, if we sub-sample by two in
each direction to get G; from Fy, we condition the variable a; at (z,y) in level I on a;4; at location (|z/2], |y/2]) in
level I +1 (Figure 2). This gives the dependency graph of the hidden variables a tree structure. Such a probabilistic
tree of discrete variables is sometimes referred to as a belief network. By conditioning child labels on their parents
information propagates though the layers to other areas of the image while accumulating information along the way.

For the sake of simplicity we’ve chosen Pr(g; |fi41,a;) to be normal with mean El,a; + Mg, fi41 and covariance
Ba,, that is,

Pr(g|f,a) = N(g, Mof + 84, As) 4)

4. EM ALGORITHM

Due to the tree structure, the belief network for the hidden variables is relatively easy to train with an EM algorithm.
The expectation step (summing over g;’s) can be performed directly. If we had chosen a more densely-connected
structure with each child having several parents, we would need either an approximate algorithm or Monte Carlo
techniques. The expectation is weighted by the probability of a label or a parent-child pair of labels given the image.
This can be computed in a fine-to-coarse-to-fine procedure, i.e. working from leaves to the root and then back out
to the leaves. The method is based on belief propagation.”

“In principle there is also a factor of Pr(I41). In many cases I+ will be a single pixel that is approximately the mean
brightness in the image. We ignore this, which is equivalent to assuming that Pr(Iz41) is flat over some range. In this case
fr+1 is zero for typical features. In addition, there is no hidden variable ar1. If we combine these considerations we see that
the I = L factor should be read as [], Pr(g: |ar,z)Pr(ar, z).
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Figure 2. Tree structure of the conditional dependency between hidden variables in the HIP model. With subsam-
pling by two, this is sometimes called a quadtree structure.

Once we can compute the expectations, the normal distribution makes the M-step tractable; we simply compute
the updated g,,, Xq,, My, and Pr(a;|ai4+1) as combinations of various expectation values.

In order to apply the EM algorithm, we need to choose a parameterization for the model. The parameterization
of Pr(g|f,a) is given above in Equation 4. For Pr(q; | a;+1) we use the parameterization

7rtu-avl+1 (5)

Pr(a;| ai41) = S fara
ay Q141

in order to ensure proper normalization.
Below, we denote the new parameter values computed during the ¢-th maximization step as 8t! and the old
values as 6°.

4.1. MAXIMIZATION

Maximizing the expectation of the likelihood over the hidden variables with respect to the model parameters gives
the following update formulae:

weh i = O Pr(a, a141,2/1,6%), )
:
ME = ((erffia) gy — 00 e ) (Br18B Y, — Bt 1)ea, (Fradenr) @
g = ()10, — MET (f141) 0, » (8)
and
A5 = (o - M) (@ = MEFn)”), | - EGPELT. ©

Here the brackets (.), ,, denotes the expectation value

_ 3. Pr(a,z|1,6%)X(x)

(X)t,a, = >, Pr(a,z|I,6%) (10)

4.2. EXPECTATION

In the E-step we need to compute the probabilities of pairs of labels from neighboring layers Pr(a;, ar41,7: | I,6%)
for given image data. But note that in all occurrences of the reestimation equations, i.e. (5,6) and (10), we need
that quantity only up to an overall factor. We can choose that factor to be Pr(I|6t) and can therefore compute
Pr(a;, ar+1,21,1|6%) instead using

Pr(ai, ar41,2 | I,6%) Pr(I|6%) = Pr(as, a141,2, 1| 6%) = S, Pr(1,A418% (11)
A\ai(z),ar41(2)
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The computation of these quantities can be cast as recursion formulae, defined in terms of quantities u and d, which
approximately represent upwards and downwards propagating probabilities. The recursion formulae are

wla,z) = Pr(g|fir,anz) [ @-a(an) (12)
z'€Ch(z)

w(a41,2) = Y Pr(alam)u(a,2) (13)
ap

di(a,z) = Zpr(allalﬂ)(il(alﬂ,z) (14)
ar4

- P

di(ar41,7) = w+1i2(7(l€-1‘:~1 .::r)(x)) diy1(ay1, Par(z)) (15)

The upward recursion relations (12-13) are initialized at I = 0 with uo(ao,z) = Pr(g|fi,a0,z) and end at I = L. At
layer L Equation 13 reduces to iy (ar41,z) = @r(z).t Since we do not model any further dependencies beyond layer
L, the pixels at layer L are assumed independent. Considering the definition of u, it is evident that the product of
all iy, (z) coincides with the total image probability,

Pr(116*) = [] @r(z) = vrsa (16)
z€lp

The downward recursion (14 - 15) can be executed, starting with equation (15) at I = L with dz41(ap41,7) =
dr4+1(z) = 1.} The downwards recursion ends at ! = 0 with equation (14).

We can now compute (11) as

Pr(as,a141,2,116%) = w(a,z)di(ar41,7) Pr(ai|aiss) (17)
PI‘(G[,Q:, I l 0t) = w (alr x)dl (ah 33) (18)

Obviously computations (12-18) in the E-step at iteration ¢ need to be completed with fixed parameters 6*.

Because of the dependence of g; on fi1, these u’s and d’s are not, in general, actual probabilities. In spite of
this it can be shown that these recursion relations are correct.

: 5. EXPERIMENTS
5.1. CLASSIFICATION OF VEHICLES IN SAR IMAGERY

Though not a medical imaging problem, we first present the results of our experiments on synthetic aperture radar
(SAR) imagery, since SAR imagery is noisy and involves detecting an extended textured object, much like a breast
mass and many other medical imaging problems. The problem was to discriminate between three target classes in
the MSTAR public targets data set, to compare with the results of the flexible histogram approach of De Bonet, et
al.5 We trained three HIP models, one for each of the target vehicles BMP-2, BTR-70 and T-72 (Figure 3). As
in Reference 5 we trained each model on ten images of its class, one image for each of ten aspect angles, spaced
approximately 36° apart. We trained one model for all ten images of a target, whereas De Bonet et al trained one
model per image.

We first tried discriminating between vehicles of one class and other objects by thresholding log Pr(I | class), i.e.,
no model of other objects is used. In essence this discriminates simply by judging whether an image looks sufficiently
similar to the training examples. For the tests, the other objects were taken from the test data for the two other
vehicle classes, plus séven other vehicle classes. There were 1,838 image from these seéven other classes, 391 BMP2
test images, 196 BTR70 test images, and 386 T72 test images. The resulting ROC curves are shown in Figure 4a.

We then tried discriminating between pairs of target classes using HIP model likelihood ratios, i.e., log Pr( | class1)—
log Pr(I | class2). Here we could not use the extra seven vehicle classes. The resulting ROC curves are shown in Fig-
ure 4b. The performance is comparable to that of the flexible histogram approach.

tThe (non-existent) label ar+1 can be thought of as a label with a single possible value, which is always set. The conditional
Pr(ar|ar+1) turns then into a prior Pr(ar)

994




Figure 3. SAR images of three types of vehicles to be detected.
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Figure 4. ROC curves for vehicle detection in SAR imagery. (a) ROC curves by thresholding HIP likelihood of
desired class. (b) ROC curves for inter-class discrimination using ratios of likelihoods as given by HIP models.

5.2. MASS DETECTION

We applied HIP to the problem of detecting masses in ROIs taken from mammograms, as detected by a CAD system
at the University of Chicago. We trained a HIP model of the distribution of positive images on 36 randomly-chosen
ROIs that contained masses, and a second HIP model on 48 randomly-chosen ROIs without masses. The likelihood
ratio was then used as the test criterion, i.e., a threshold on this ratio is used to decide which ROIs will be called
masses. The true and false positive rates as a function of the threshold were measured on a test set with 36 mass

and 49 non-mass ROIs.
A search was performed over the number of hidden labels values at each level. The search criterion was the

negative log-likelihood on the training data plus the minimum-description-length penalty term, dlog(/N)/2, where d
is the number of model parameters and N is the the number of training examples. The maximum number of labels

' in a level was bounded (somewhat arbitrarily) at 17, since doubling the number of components in a level at this point

was observed to decrease the MDL criterion, but very little, and the computation time would approximately double.

The best architecture had 17, 17, 11, 2, and 1 hidden label in levels 0—4, respectively. For this architecture, 4,
was 0.73. This detector had a specificity of 33% at a sensitivity of 95%. The ROC curve is shown in Figure 5.
While this performance is not as good as we might hope, being worse than our own HPNN classifier,® for instance, it
demonstrates that the model captures relevant information for classification. We hope that further work, particularly
in model and feature selection, will improve on these results.

6. CONCLUSION

We have developed a class of image probability models we call hierarchical image probability or HIP models. To
justify these, we showed that image distributions can be exactly represented as products over pyramid levels of
distributions of sub-sampled feature images conditioned on coarser-scale image information. We argued that hidden
variables are needed to capture long-range dependencies while allowing us to further factor the distributions over
position. In our current model the hidden variables act as indices of mixture components. The resulting model is
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Figure 5. ROC curve for HIP detector of Mass ROIs generated by U. Chicago CAD.

somewhat like a hidden Markov model on a tree. The HIP model can be used for a wide range of image processing
tasks besides classification, e.g., compression, noise-suppression, up-sampling, error correction, etc.

There is much room for further work on variations of the specific HIP model presented here. The tree-structured
discrete hidden variables lend themselves well to exact marginalization, but they fail to capture certain image
properties. For example, contrast level and orientation could be given continuous parameterizations. See, for
example, the work of Simoncelli and Wainwright, who developed a very similar model to capture the statistics
of contrast level (which they refer to as “scale”), though they did not formulate their model as an image probability.®
Furthermore, as is well known, the tree structure of the hidden variable dependencies will tend to artificially suppress
the statistical dependence between some neighboring pixels, but not others. Allowing multiple parents would alleviate
this. Unfortunately, either of these modifications would make it impractical to marginalize over the hidden variables,
which is the proper probabilistic procedure. There are approximate alternatives to exact marginalization, which
should allow a far wider variety of hidden variable structures.
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